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Abstract. In this paper, the results of the EvAAL-2013 localization competition are examined. A comprehensive description
of RealTracTM technology, the winner of this competition, is presented. Focused on real-time location technology, RealTrac
hardware includes a server, access points (gateways and repeaters), and mobile devices (voice intercoms and tags). A location
calculation engine is based on Bayesian algorithms fusing data from time-of-flight and received signal strength measurements,
inertial measurement units, building structure, and optionally, from context events. The peculiarity of the embedded navigation
system is that it works effectively independent of the place where the mobile tag is actually attached, i.e., it could be mounted
on one’s foot, carried freely in a jacket pocket, held in one’s hand, or even hung on a shoestring. The RealTrac system can easily
be combined with third-party systems via the Real Time Location System Communication Protocol that consists of an open API
and uses a common Keyhole Markup Language format for geo-data presentation. Furthermore, in this paper, it is shown that the
scores obtained in the competition regarding positioning accuracy might be significantly higher when the applied particle filter
is appropriately configured and a probability-based approach for area-of-interest determination is introduced.
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1. Introduction

A rise in the application of real-time location (RTL)
technology has intrigued the public sector and research
agencies, with both exploring new paths of innovative
communication. In addition to usage by the general
public, social scientists are exploring opportunities for
utilizing RTL. By monitoring, collecting, linking, and
interpreting RTL data, a new form of social gathering
has emerged. One of the major transitions in recent re-
search is the increased requirements for positioning ac-
curacy, motivating a variety of new research programs
in and across various competitions.

*Corresponding author. E-mail: alexmou@mail.ru

1.1. Social dimension of RTL

Demographic trends of aging populations all over
the world have raised the importance of issues involv-
ing support and care of the elderly. The duty of new
generations is to provide opportunities for such indi-
viduals to continue living a safe, rewarding, and inter-
esting life. These opportunities should include, but not
be limited to, medical treatment and convenient liv-
ing conditions. In this new era, a combination of infor-
mation and communication technologies can help us
achieve these goals.

Ambient assisted living (AAL) [1] addresses these
goals by exploiting new technologies and exploring
ways in which they can be integrated into the every-
day lives of senior citizens as well as people in hos-
pitals and nursing homes. AAL provides solutions for
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creating safe and easy-to-use environments, in particu-
lar navigation assistance inside buildings and commu-
nication with personnel.

Numerous technologies have been researched and
applied to provide location information indoors. Typ-
ical positioning systems include the following three
components: equipment, techniques, and location esti-
mation algorithms [2]. Equipment can be further clas-
sified as infrastructure (e.g., beacons, base stations, an-
chors, and transceivers) and mobile devices (e.g., re-
ceivers and tags). Note that the mobile device is usu-
ally attached to one’s body. The entire set of tech-
niques can further be classified by a signal used for
position estimation; this includes radio signals (i.e.,
radio frequency), near field communication and radio
frequency identification (RFID), and infrared or ul-
trasound waves. Some techniques do not require the
use of mobile devices, for example, video surveillance
or ultrasonic systems, which measure changes in the
monitored field of view.

For wireless radio signals, it is possible to measure
not only the received signal strength (RSS) but also
the time-of-flight (ToF) value and angle of arrival. The
location algorithm must fuse measurements from dif-
ferent sensors, apply some constraints, and produce
a final estimate of the object’s position. Variations of
Kalman or particle filters are usually employed for this
task [3].

The EvAAL competition [4] aims at establishing
benchmarks and evaluation methods for comparing
AAL solutions. The primary goals of the contest are
to identify leading suitable technologies, define how
these could be implemented within ambient living en-
vironments, and suggest how to transfer them into the
industry.

1.2. Indoor localization competition

In July 2013, teams from France, Portugal, Italy, and
the Russian Federation, as well as three teams from
Germany, participated in the indoor localization com-
petition held in Madrid, Spain. In addition to our Real-
Trac team, the description of the systems used by other
participants is as follows:

– The LOCOSmotion system used WLAN finger-
printing and accelerometer-based dead-reckoning
[5].

– The AmbiTrack system provided marker-free lo-
calization and tracking via a camera-based ap-
proach [6].

– FEMTO-ST/HMPS presented a system coupling
outdoor positioning service with Wi-Fi based fin-
gerprinting and trilateration system, as well as a
marker analysis system [7].

– The IPNlas indoor localization system was based
on fingerprinting in Wi-Fi network using an An-
droid smartphone [8].

– The Magsys localization system measured (via a
wearable receiver) the strength of the magnetic
field formed by stationary transmitters. Next,
these measures were transformed into position
and orientation information. The underlying prin-
ciple was the registration of resonant oscillating
magnetic fields [9,10].

– The AALocation localization system [11] used
the ZigBee network and was based on the fu-
sion of data from RSS measurements and pres-
ence sensors [12].

Our positioning system, presented by the Russian
RealTrac team, earned the first prize in the localiza-
tion track. Some aspects concerning RealTrac technol-
ogy were published in [13]. The purpose of our pa-
per is threefold. First, RealTrac technology, particu-
larly concerning AAL systems, is described. Second,
the algorithms applied during EvAAL-2013 are jus-
tified. Third, possible improvements to our achieved
results by tuning the localization algorithms are dis-
cussed. These settings were determined based on a
posteriori analysis of the competition results.

The remainder of the paper is organized as follows.
Section 2 contains a description of the EvAAL contest,
including competition rules and procedures. In Sec-
tion 3, a comprehensive overview of RealTrac tech-
nology, including network architecture, hardware, pro-
tocols, the RealTrac API, voice communication, and
other details is provided; note that in this section, the
necessary aspects for integrating RealTrac and AAL
systems are discussed as well. Section 4 is dedicated
to the developed positioning technique, disclosing de-
tails regarding the particle filter, the principles of the
applied inertial measurement subsystem, and the jus-
tification of the algorithm applied for area-of-interest
(AoI) determination. In Section 5, the obtained scores
are summarized, and in Section 6, the results regarding
point-to-point localization accuracy and the success of
AoI determination are evaluated. Methods for possi-
ble improvements in both these aspects are demon-
strated. Furthermore, particle filter performance and
dependence on the number of particles is discussed. Fi-
nally, Section 7 is devoted to conclusions and outlines
future goals.
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2. EvAAL-2013 competition

Evaluating AAL systems through competitive bench-
marking (EvAAL) is an activity focused on evaluating
solutions related to AAL by organizing annual compe-
titions. The goal of these competitions is to compare
different AAL solutions and provide developers and
researchers with an arena in which their technologies
can be tested. Evaluation methods and benchmarks are
also subject to ongoing refinement and improvement.
In addition to comparing algorithms, EvAAL focuses
on such solution parameters as cost, deployment diffi-
culty, interoperability, among others.

The third EvAAL competition was organized at the
Smart House Living Lab of the Polytechnic University
of Madrid, Spain; more specifically, this is where the
indoor localization track and AAL tracking was de-
ployed.

The Living Lab building is a single-story building
with a control room, a bathroom, and common space
comprising a kitchen, a living room, and a bedroom.
It also has a porch with a ceiling. In the competition,
the localizable space includes the bathroom, common
space, and porch.

The floor plan of the Living Lab is presented in
Figure 1, with the height of the ceiling varying from
2.32 to 2.62 m. The Living Lab has some home appli-
ances (e.g., television set, refrigerator, oven, and wash-
ing machine). Inside the Living Lab, sensors and ac-
tuators are placed for different purposes, for example,
flood sensors in the kitchen and bathroom, smoke and
fire sensors next to the kitchen, and magnetic contact
sensors on some doors and windows. A domotic bus
provides notifications for all events, with each event
recorded with its specific coordinates. This informa-
tion is available for use by a localization system.

2.1. Competition rules and procedures

Although localization systems have actively been
investigated and used for a long time, there is no com-
mon standard as to how to develop them, and which
services and components they should have. Therefore,
the competition’s organizing committee proposed a set
of criteria to comprehensively rate systems not only
with respect to accuracy but also convenience for daily
use, ease of integration into house interior, installation
complexity, and reliability.

These five criteria were weighted according to their
importance as follows:

– Accuracy (weight 0.35),

Fig. 1. Smart House Living Lab plan

– Availability (0.20),
– Installation complexity (0.10),
– User acceptance (0.20), and
– Interoperability with AAL systems (0.15).

Total scores were calculated by weighting all five
criteria with the corresponding weight factors.

The accuracy of each system was evaluated by aver-
aging the scores across the three phases described be-
low.

In the first phase, the positioning system should de-
termine the AoI in which the object is. The typical AoI
included the bathroom, the front of the kitchen, and the
area near the dining room table.

In the second phase, the positioning system should
estimate the real-time position of a single user in the
scene without any disturbances.

In the third phase, the system should evaluate the
user’s position in the presence of another person who
moves freely inside the localization area.

The AoI accuracy score was given by the expression
10 · T + 5 · U , where

– T is the fraction of time in which the localization
system provides the correct information regard-
ing user presence in a given AoI and user absence
from any AoI;

– U is the fraction of time during which the system
confuses a small area with a big area that contains
a small area (big areas are presented in Figure 1;
small areas are not shown).

To calculate the point-to-point accuracy score, the
individual error of each measurement was evaluated as
the Euclidean distance between the measured and ex-
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pected points. Next, the 75th percentile P of the errors
was determined and scaled according to the formula
below.

Score =


10 if P <= 0.5m

12− 4 · P if 0.5m < P ≤ 2m

8− 2 · P if 2m < P ≤ 4m

0 if P > 4m

(1)

The organizers allowed the competitors to install
their equipment within 1 h. The time spent preparing
was incorporated into installation complexity criteria
(see rules in [14]).

By the end of the installation stage, trajectory
recording began. If the technology assumed the use
of mobile tags, then such tags were given to the actor
in advance. In some cases, the actor was instructed to
wear the tag in a specific manner. For our RealTrac
system, the actor was free to place the tag anywhere
on the body since the technology does not have any re-
strictions regarding tag placement on a user’s body –it
can be in one’s pocket, in one’s hand, or even hanging
on a shoestring as a necklace. Next, the actor moved
along a few predefined paths with stops at predefined
points, as shown in Figure 2. The true ground trajec-
tory was not disclosed to competitors.

Fig. 2. An actor moves along a predefined trajectory; our mobile tag
was placed freely in the left front trouser pocket

The phases indicated above were performed twice,
and the best marks were recorded. After completing
this portion, the last two evaluation criteria (i.e., user
acceptance and interoperability with AAL systems)
were evaluated using questionnaires. Many questions
regarding every aspect of the developed system were
asked –from device size and charging requirements to
the ability to utilize the system in the Open Source
community.

2.2. Installation at the Living Lab

Previous research showed that typical errors of ToF
ranging for nanoLOC hardware indoors were usually
comparable with the size of the room [15]. Therefore,
given an area of 121 m2, only four access points were
used as anchors in the Living Lab. The anchors were
installed near the corners of the room to cover the en-
tire localization area. Two access points were placed at
metal beams near the ceiling of the porch area (h ≈
2.5 m) and two between the light plates of the ceil-
ing and roof in the bathroom and bedroom. Positions
of anchors were marked by numbers 1–4, as shown in
Figure 3. The access point marked with as 5 was used
as a gateway; it relayed data to and from the wireless
segment.

Fig. 3. RealTrac graphical web interface with numeric marks indi-
cating the placement of access points in the Living Lab

Since all access points were powered from external
batteries, the installation process was very quick –the
installer spent only 2 min and 1 s on system deploy-
ment.

RealTrac localization algorithms used the follow-
ing three data sources: ToF data, RSS data, and trajec-
tory data recorded by an embedded inertial measure-
ment unit (IMU). Localization accuracy depends on
the quality of these three data sources. Among these
three sources, the IMU data contributed to the accuracy
to the greatest extent.

Given this, it was decided to hide all access points in
the ceiling. On the one hand, this decision led to less-
accurate ToF ranging; on the other hand, it resulted in
better user acceptance criteria scores.

The use of additional anchors inside the room was
not reasonable. It did not lead to any increase in loca-
tion accuracy because the NLOS errors were high and
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an additional ToF radius did not yield a substantial re-
duction in the localization area.

Note that the organizers provided access to all
location-based events that occurred in the system in
the Living Lab. For example, manually switching the
lights on or off generated the corresponding event. In
this case, the localization server could position the per-
son who pressed the button near the switch. Unfortu-
nately, in our 2013 RealTrac system, the ability to use
third party geo-events in the localization algorithms
was not implemented by authors.

Detailed results of the RealTrac system are pre-
sented in Section 5. Final scores and the jury decision
scores of all competitors are summarized in Table 2.

3. RealTrac technology description

RealTrac technology has been developed by RTL-
Service JSC (Petrozavodsk State University, Russian
Federation) since 2008. Applicable to the localization
of mobile devices and voice communication between
intercoms, such technology is based on the nanoLOC
radio standard (IEEE 802.15.4a CSS) developed by
Nanotron Technologies GmbH. The main features of
this standard include a high data rate of 1 Mbit/s, an
automatic ToF round trip time ranging procedure, and
low power consumption.

3.1. Network operation scheme

As shown in Figure 4, the RealTrac system com-
prises mobile devices (intercoms and tags), access
points, and a server.

Access points form a radio segment. They can mea-
sure distances to mobile devices using the ToF method
and send these data to the server. Access points are
connected to the server via Ethernet; therefore, a Re-
alTrac system can be installed in a building with an
existing wired network.

The server estimates mobile device location after re-
ceiving the measured distances from the access points.
Locations can be displayed on a browser on any laptop
connected to the Internet. Furthermore, a third-party
application obtaining location data from the server can
be developed, for example, through HTTP.

Radio segment coverage can be enlarged using ac-
cess points operating in a repeater mode.

Depending on the application, the RealTrac system
can support any number of mobile devices.

The effective time of one frame transmission, in-
cluding interframe space, headers, and an acknowl-
edgement, is ≈1.4 ms. In the round trip time (RTT)
scheme, each ToF measurement consists of three suc-
cessive Data/Ack frame exchanges. Therefore, the to-
tal time required for one RTT ranging is ≈5 ms.

To determine the tag inside the localization area, at
least three ToF measurements from the access points
are required. In practice, four or five such measure-
ments are recommended. Thus, the system is not per-
mitted to perform more than 20–25 measurements/s,
as the 2.4 GHz ISM bandwidth is limited.

Based on the above, the maximum number of mo-
bile devices in one network segment depends on the
distance measurement frequency. For example, if the
position update period is 1 s, then the network can pro-
cess no more than 20 mobile tags. If the position up-
date period is 10 s, the number of tags can be increased
to 20, and so on.

For technical details on the RealTrac radio system
and operation algorithms, see [13]. Additionally, the
subsections below describe the main characteristics of
the hardware devices and software components of the
system.

3.2. RealTrac hardware units

The RealTrac system consists of different types of
hardware units. All the hardware devices are roughly
divided into four groups, as mentioned below.

1. Mobile intercoms and tags (Figure 5a-5c)
2. Access points –data transfer devices providing

radio network infrastructure (Figure 5e-5f)
3. An accessory device for primary network setup

and testing performance (Figure 5d)
4. A Server –a node that collects and analyzes data

and manages the sensor network

3.2.1. Mobile devices
Mobile devices (intercoms and tags) are equipped

with the following:

– pressure sensor,
– temperature sensor,
– RSS meter,
– three-axis accelerometer,
– three-axis gyroscope,
– three-axis magnetometer, and
– RFID tag.
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Fig. 4. RealTrac technology network diagram

Fig. 5. RealTrac technology hardware: (a) duplex intercom Rio R©;
(b) tag –mobile sensor; (c) half-duplex intercom radio Sentry R©; (d)
wireless handheld network analyzer; (e) industrial outdoor access
point; and (f) indoor access point

An intercom operates in a cyclic manner at a cer-
tain frequency –i.e., it wakes up, listens to its radio
segment for incoming packets, performs certain oper-
ations (if requested by the server), then sleeps during
the rest of its cycle time. Thus, it provides the required

frequency of distance measurements while conserving
battery power. The duration of this cycle can be ad-
justed by server-side software.

When an intercom accepts an incoming call or ini-
tiates a call itself, it is put into the sound mode and
does not sleep at all. After the call is finished, the in-
tercom switches back to the power-saving mode. A tag
operates according to the same scheme.

3.2.2. Access points
Stationary RealTrac nodes (i.e., access points) are

equipped with the following:

– pressure sensor,
– temperature sensor, and
– RSS meter.

The two key features of the access point are distance
measurement and data transfer from the radio segment
to the server.

The access point operates in one of two modes, ei-
ther gateway or repeater mode. In the gateway mode,
the access point receives data from mobile nodes in-
cluding ranging results, system data, voice streams,
and sensor data. It then transfers these data to the
server.

The repeater mode implies that the access point re-
peats all received packets from the wireless network
and increments the hops field in doing so. Evidently,
it skips packets sent from itself and only retransmits
packets that it has never repeated before.

Access points participate in a distance ranging pro-
cedure in both modes.
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The mode is automatically selected when the device
starts up. If the access point is connected to Ethernet
when the power is turned on, it operates in the gate-
way mode; otherwise, it operates in the repeater mode.
In the gateway mode, the access point sends a broad-
cast DHCP request to obtain an IP address from a local
DHCP server.

An access point communicates with the RealTrac
server through the Inter Nano Communication Proto-
col (INCP) [13].

If a local network contains a specifically preconfig-
ured DHCP server, then this server returns the IP ad-
dress of the INCPd server that the access point should
work with. Next, the access point communicates with
the INCPd server directly using INCP.

Otherwise (i.e., if a local network contains only a
common DHCP server), the access point obtains the
default network settings and sends a special DNS re-
quest to which a DNS server returns the IP address of
the INCPd server that serves the given access point.

In the repeater mode, the access points do not have
IP addresses and hence wireless INCP communication
goes over the nanoLOC data link level.

The effective bandwidth of gateways and repeaters
is limited by the radio throughput and does not exceed
500 Kbps.

The total occupied bandwidth of the network de-
pends on the number of installed repeaters. Use
of repeaters decreases the performance because of
frame duplication, unnecessary retransmissions, and
unavoidable collisions.

Note that there is only one case in which using
a large number of repeaters is possible, namely, in
mines, where long chain-like segments would be orga-
nized.

3.2.3. Analyzer
The analyzer is an essential device for system main-

tenance and deployment assistance. It can be used
for experiments, radio monitoring, and other tasks.
Apart from other RealTrac hardware, the analyzer is
equipped with a keyboard and graphical display for en-
hanced user interaction.

Features provided by an analyzer include the follow-
ing:

– searching and identifying nearby active devices;
– displaying information regarding devices, filtered

on-demand;
– displaying information regarding network status,

such as RSS and number of neighbors; and
– configuring analyzer settings.

Fig. 6. Modular software structure of the RealTrac technology

The analyzer is equipped with an 1800 mAh bat-
tery, which guarantees that the device can work con-
tinuously for up to 14 h without recharging.

3.2.4. Server
For the EvAAL-2013 competition, a Dell Inspiron

Ultrabook with 4 GB RAM and an Intel R© CoreTM i5-
3317U (1.7 GHz) processor was used as the server.

3.3. Software architecture

As illustrated in Figure 6, the modular software
structure of the RealTrac technology comprises the fol-
lowing components:

– RealTrac server (localization module, INCPd
server, and RTLSCP server);

– Asterisk voice communication server;
– Optional application server (see "RealTrac ap-

plication server" and "Third party application
server" in Figure 6); and

– Client software (see "RealTrac web client" and
"Third party web client" in Figure 6).

The INCPd server is responsible for the intercom-
munication between the hardware and software com-
ponents. This server manages the wireless network, in-
tegrates the access points into the system via Ethernet,
and mediates between hardware devices and other soft-
ware components. As a result, software components
can communicate with hardware devices as with other
software entities. The INCPd server and access points
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use INCP to provide data and sound transfer to and
from them. A brief description of INCP is presented in
[13].

One of the key components of the INCPd server is
a localization module that calculates the location of a
given device using all available information. The local-
ization module uses its own database for storing tem-
porary data required for further location estimation.

The INCPd server handles the following data re-
garding devices:

– global coordinates,
– movement trajectory obtained from an embedded

IMU,
– number of human steps obtained from IMU,
– device battery voltage,
– position update cycle frequency,
– measured absolute pressure,
– measured temperature, and
– measured RSS value of an incoming radio frame.

The RealTrac server provides an API by imple-
menting the Real Time Location System Communi-
cation Protocol (RTLSCP) (see "RTLSCP server" in
Figure 6). This public API is a part of the RealTrac
API. On the basis of the representational state transfer
(REST) architectural style, RTLSCP uses JSON no-
tation for requests and responses, and was designed
to simplify third-party application development (see
"Third-party application server" component connected
to "RTLSCP server" in Figure 6).

The basic RTLSCP version provides only a few fea-
tures, including device list and location requests and
device configuration options. Location information is
provided in global coordinates (i.e., latitude, longi-
tude, and altitude) that works well with common geo-
services such as Google Maps. RTLSCP is described
in more detail in Section 3.5.

In addition to the basic RTLSCP version, the ex-
tended version of the protocol consists of optional fea-
tures such as location history, event notifications, and
voice calls history. The RealTrac system incorporates
the extended RTLSCP version as a separate compo-
nent (see "RealTrac application server" in Figure 6 and
note the second connection with "RealTrac web client"
marked as "RTLSCP.ext1" that reflects the extended
RTLSCP version).

Technically, the application server is an RTLSCP
client of the RealTrac server. It might obtain, for in-
stance, location data from the server and store such
data in a separate database to provide location history
on demand. Data caching might be implemented on the

client side, but a better place to realize such business
logic is on a server.

The application server provides the following infor-
mation through the extended RTLSCP:

– location history,
– maps images storage,
– mobile device owner details,
– distance from a given point to a device and its

direction,
– event notifications related to entrance to and exit

from a given area, as well as two devices meeting,
– event notifications related to RFID-based access

control,
– object’s motion details (e.g., static, walking, run-

ning, and cycling), and
– alert notifications (e.g., fall of the owner and alert

button click).

The INCPd and application server are both devel-
oped using JDK 7 and various open source libraries.

A third-party developer can extend the application
server to provide additional data to a client via new
JavaScript modules; however, the provided RealTrac
application server and its web client implement most
common features and are ready to use as is. The web
client application is a good example of how to integrate
the RealTrac system into a corporate application (or an
AAL system).

3.4. Voice communication

Voice communication is provided by the open
source PBX Asterisk software (see "Asterisk VoIP
server" in Figure 6). The RealTrac system supports
duplex and half-duplex voice communication between
intercoms and between an intercom and a static SIP-
phone connected to the server. The system can be ex-
tended to support voice communication between Re-
alTrac hardware and traditional telephones or cellular
phones by installing a special telephony adapter on the
server.

When intercoms are moving within the wireless net-
work coverage, automatic roaming is supported by the
system server. In such cases, sound packets are sent
through the nearest access point to the given intercom.

Voice communication is the most resource-intensive
feature of the entire system. Accordingly, there are
quite evident requirements for the server hardware.

The RealTrac voice communication feature is de-
scribed in more detail in [13].



A. Moschevikin et al. / RealTrac technology at the EvAAL-2013 competition 9

3.5. RealTrac API

As localization in AAL scenarios can be exploited
by other applications to offer advanced services, inte-
grability becomes a very significant parameter for lo-
calization systems.

Modern software and hardware systems are often
complex and continuously evolve during the mainte-
nance phase. The architecture of such systems must be
robust to changes to enable support and keep the devel-
opment process easy and effective. Furthermore, the
ability to extend such systems is even more important.

A stable system architecture has well-defined inter-
faces between core components of the system and pub-
lic APIs for third-party extensions and use. Special at-
tention should be paid to public system APIs because
their usability causes the success (or failure) of the sys-
tem among developers, and consequently, in the mar-
ket.

Common principles of effective system APIs in-
clude the following:

Simplicity. The API must be easy to learn and use.
Ideally, the API does not require extra documentation
to learn; a few descriptive paragraphs should be suffi-
cient to start.

Implementation independence. Implementation in-
dependence allows developers, for example, to change
the programming language used for the implementa-
tion of the API without changing the API itself. This
also means that third-party developers can use any lan-
guage or technology to create clients of the API.

Robust to change. A good API must be robust to
changes in the underlying technology. For example,
new hardware might be substituted for old, and the API
of the system based on the old hardware should not
require changes.

Extensibility. API extensibility allows core develop-
ers to add new features to the system without nega-
tively impacting published API versions.

The RealTrac system is equipped with REST-based
HTTP services that comply with all of the above prin-
ciples. These HTTP services form the RTLSCP –the
public API for the RealTrac system. Formats of re-
quests and responses of these REST-based services use
JSON notation. The principles of a good API listed
above are implemented as follows:

– Simplicity is provided via the JSON notation it-
self. JSON is easy for individuals to read and
write. Moreover, RTLSCP uses well-known ter-
minology such as anchor, beacon, and node in re-

quest specifications. Hence, no special documen-
tation is required for understanding the protocol.

– To achieve implementation independence, the
current RTLSCP implementation is based on
the Java Virtual Machine; however, it could
be changed without affecting RTLSCP, because
JSON is completely language independent and
does not limit core and third-party developers as
CORB or other RPC technologies and notations
do.

– For robustness, if the hardware of the RealTrac
technology changes, then RTLSCP is still appli-
cable because hardware does not touch the items
of RTLS.

– Extensibility is provided by the REST specifica-
tion since any number of new services could be
created by simply adding new URLs and corre-
sponding request specifications to the list of avail-
able RTLSCP services.

RTLSCP covers most common features of any
RTLS and provides services for handling RealTrac
hardware and visualization. The common API pro-
vides the following data:

– Real-time locations of anchors and mobile nodes,
– Lists of anchors and mobile nodes, and
– Location calculation results in absolute and rela-

tive coordinates.

The following additional data structures are served
by the RealTrac APIs:

– Anchors and mobile nodes parameters and sta-
tuses, and

– Keyhole Markup Language (KML) files for visu-
alization.

An example of a typical RTLSCP request and corre-
sponding response are presented in Listing 1 and List-
ing 2, respectively. The request contains one parame-
ter, a list of MAC addresses whose locations are re-
quested.

Listing 1: RTLSCP request example 1

{ "request": {
"mac": [
"BAD90234FF41",
"BAD90234FF42"

]}}

The response consists of the list of structures that in
turn consist of the MAC address, the location calcu-
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lation time, and the coordinates of the object. In this
example, the (x, y, z) coordinates are relative to some
known pivot.

Listing 2: RTLSCP response example 1

{ "response": [
{

"mac": "BAD90234FF41",
"unixtime": "1343291851",
"coord": {

"loc": {
"x": 32.7,
"y": 45.3,
"z": 0.0

}}},
...

]}

One of the main RTLS options is to visualize the
calculated location in relation to specified physical ob-
jects. The easiest way to present a location in a web
browser is via Google Maps. Given the growth in the
popularity of web interfaces in recent years due to
their simplicity of implementation and support, as well
as cross-platform features [16], KML-formatted files
were proposed for use in RTLSCP. KML is natively
supported by both Google Maps and Google Earth ap-
plications. A distinct REST service in RTLSCP allows
all data for visualization to be acquired as one KML
file; more specifically, this includes anchors and mo-
bile node locations and statuses.

Listing 3 gives an example of such a KML file; it
consists of coordinates and metadata for walls and an-
chors, and defines the color of wall lines. First, the
building name ("ITpark / ITpark.floor.2") and wall line
color ("FF0000FF" in <alpha><RGB> format) are de-
fined. Second, wall coordinates are presented, and fi-
nally, the list of anchors and its properties are defined.

Listing 3: RTLSCP response example 2

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

<kml xmlns="http://www.opengis.net/kml/2.2"
xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:gx="http://www.google.com/kml/ext
/2.2" xmlns:xal="urn:oasis:names:tc:ciq:
xsdschema:xAL:2.0">

<Document id="ITpark.floor.2">
<name>ITpark / ITpark.floor.2</name>
<Style id="style.wall">

<LineStyle>
<color>FF0000FF</color>
<width>1.0</width>

</LineStyle>
</Style>
...
<Folder>

<name>walls</name>
...
<Placemark>
<styleUrl>#style.wall</styleUrl>
<MultiGeometry>
<LineString>
<altitudeMode>absolute</

altitudeMode>
<coordinates>

34.35426029047551,61.78706865853971,77.0
34.35353384612551,61.78683938835208,77.0
...
34.35367522330444,61.78686074498395,77.0

</coordinates>
</LineString>
...

</MultiGeometry>
</Placemark>

</Folder>
<Folder>

<name>anchors</name>
...
<Placemark>
<name>0000CAFE0001</name>
<styleUrl>#style.anchor</styleUrl>
<ExtendedData>
<Data name="rtls.object">
<value>anchor</value>

</Data>
<Data name="rtls.anchor.mac">
<value>0000CAFE0001</value>

</Data>
</ExtendedData>
<Point>
<altitudeMode>absolute</altitudeMode>
<coordinates>

34.35355700038095,61.78683500209754,77.0
</coordinates>

</Point>
</Placemark>
...

</Folder>
</Document>
</kml>

The REST service allows one to request actual ob-
ject locations as another KML file, which provides
only new location coordinates that can be used to up-
date existing positions on the map. Using a similar ap-
proach, it can also provide updated anchors positions.

As an example, to incorporate this KML file into a
Google Earth application, it is first necessary to use a
special KML file that describes a resource to obtain ac-
tual locations (see Listing 4). The structure and format
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of the file with new locations is almost identical to the
main KML file; therefore, it is not presented here.

Listing 4: RTLSCP response example 3

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>
<name>ITpark</name>
<NetworkLink>

<name>locations</name>
<Link>

<href>http://127.0.0.1:9002/rtlscp/
location/ITpark/kml/</href>

<refreshMode>onInterval</refreshMode>
<refreshInterval>1</refreshInterval>
<viewRefreshMode>onRegion</

viewRefreshMode>
</Link>

</NetworkLink>
...

</Document>
</kml>

Third-party developers can easily integrate these
two KML files into standard Google Earth applications
while testing the RealTrac system during deployment.

All location coordinates are received in one of the
following two formats:

– absolute (latitude, longitude, altitude);
– relative (x, y, height).

By default, KML files contain locations in absolute
coordinates. Two location coordinate formats allow
third-party developers to begin with a simple relative
coordinate format that can be quickly integrated into
lightweight RealTrac client applications. Rich web and
desktop applications that use Google Maps plugins or
other plan visualization utilities that require latitude,
longitude, and sometimes altitude can benefit from the
absolute coordinates format.

In summary, RTLSCP provides a simple and robust
public API that can be used to implement additional
business logic, thus providing the possibility of in-
tegrating RealTrac technology into existing corporate
and open source systems.

3.6. Integration of RealTrac system and AAL

Integration with AAL software was one of the
key parameters in the overall scoring criteria at the
EvAAL-2013 competition. The RealTrac system mainly
conforms with the integrability criteria defined by the

organizers, since the technology provides an API to
RTLSCP, as described in Section 3.5.

To integrate the RealTrac software system with the
EvAAL benchmarking software, the so-called "light"
integration procedure was used [17]. This procedure
consisted of sending simple text messages to the
benchmarking software over TCP. The developed mid-
dleware requested device coordinates from the Real-
Trac server software using RTLSCP commands, and
then sent localization data to the EvAAL benchmark-
ing software with a 2 Hz update frequency. The same
middleware generated AoI events.

The text message with localization data contained
the following fields:

– competitor identifier (a string);
– estimated X coordinate of the object, represented

in decimal form;
– estimated Y coordinate of the object;
– integer representing the POSIX timestamp of the

current location estimation; and
– list of numbers representing the AoIs in which the

object is located.

4. Positioning technique overview

The RealTrac technology is based on nanoLOC
(IEEE 802.15.4a) transceivers operating in a 2.4 GHz
bandwidth. This radio standard utilizes the chirp
spread spectrum technique and provides automatic
ToF RTT ranging.

Ultra-wideband (UWB) technologies (also defined
within the IEEE 802.15.4a standard) are the main com-
petitors to nanoLOC in terms of ToF measurements.
UWB has a substantial advantage in that it provides
more accurate distance measurements since the spec-
trum is considerably wider; however, the range of re-
liable communication is less. Regulations on radio
transmission power set an upper limit of -41.3 dB-
m/MHz on a signal’s power spectral density emission
for UWB transmitters.

The communication range is tightly connected to the
spatial density of the deployed equipment and influ-
ences the overall costs of the local positioning system.
This enables nanoLOC-based hardware to technically
compete in some market niches, particularly in appli-
cations that require location accuracy of 1–3 m.

As mentioned above, the most accurate and least
costly positioning might be achieved by an inertial
navigation system. With this approach, the trajectory
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is obtained by an IMU embedded in a majority of off-
the-shelf handheld devices. In addition to this trajec-
tory being relative to some origin, the use of these data
is a powerful technique for increasing localization ac-
curacy. The data from IMU can be used separately to
determine the indoor location [18,19] or fused with in-
formation from wireless sensor networks for better lo-
cation accuracy.

Numerous systems utilize IMU data together with
RSS data. Such systems are based on RFID [20] tech-
nologies or WiFi [21,22]. The latter is widely used be-
cause of the ease of implementation on smartphone
platforms. Another group of systems uses IMU to-
gether with the UWB technique [23,24,25]. Though
there are several systems processing IMU data together
with RSS or UWB measurements, there is currently a
lack of systems that use IMU together with ToF RTT
nanoLOC data.

The use of IMU as an additional source of informa-
tion for nanoLOC-based systems allows such systems
to compete with UWB-based systems in terms of in-
stallation complexity and system costs, as well as with
RSS-based systems in terms of localization accuracy.

The choice of which positioning algorithm should
be used depends on the information available. A ma-
jority of IMU-plus-RSS-based systems use particle fil-
ters for data fusion. The IMU-plus-UWB-based sys-
tems use the extended Kalman filter for processing
more accurate UWB measurements.

Furthermore, the Kalman filter can be used for fus-
ing ToF RTT-based measurements in the 2.4 GHz
range with IMU data [26]. However, this approach re-
quires accurate IMU data that can be measured by a
wheel-based robot and absence of NLOS errors that
can be achieved only outdoors. The positioning system
focused on indoor pedestrian localization implies less
accurate IMU data. The presence of severe NLOS er-
rors in ToF measurements indoors makes the applica-
tion of the Kalman filter considerably more difficult.

The RealTrac technology enables measurements of
both distance and path loss between an access point
and a mobile node. The IMU data are used to improve
positioning accuracy. The localization server is con-
figured to use KML-formatted information about the
locations of access points and building structure (i.e.,
walls, stairs, rooms, corridors, and furniture). As de-
picted in Figure 6, location calculation starts as the IN-
CPd server resends the following data to the localiza-
tion module: MAC addresses of access points, MAC
address of a mobile device, corresponding set of dis-

tance and path loss measurements, and information
from the embedded IMU.

Further details concerning IMU algorithms are dis-
cussed in Section 4.1.

Several positioning algorithms that fuse this infor-
mation have previously been studied [15,27]. For the
EvAAL competition, the particle filter was chosen to
calculate the position of the object (see the description
in Section 4.2). This novel approach for the fusion of
IMU data with ToF data allows us to construct the par-
ticle filter without using the weights.

4.1. IMU-based localization

Positioning accuracy might be significantly im-
proved if the three-axis accelerometer and gyroscope
are used. The developed IMU-based navigation engine
does not restrict the typical usage scenarios of a Real-
Trac device and assumes it could be placed wherever
the person finds it suitable.

To increase the battery lifetime, the power-saving
mode of operation was implemented. While the ac-
celerometer is always in an active state, the gyroscope
is turned on only when motion or a walking pattern
is detected. The gyroscope calibration settings are cal-
culated during normal operation and stored in non-
volatile memory.

The IMU-based engine includes distance, orienta-
tion, and trajectory calculation modules, described in
detail in [28].

The first module estimates the total distance trav-
elled by counting the number of steps and calculating
step lengths. The step counter detects a step with an
accuracy that exceeds 98%. The proposed step count-
ing technique showed advanced performance without
regard to orientation of the device, walking speed, or
physical characteristics of the person. For step length
Lstep estimation, the following formula was identi-
fied and used as the most efficient for normal walking
speed [28]:

Lstep = K · tstep · 4
√
amax − amin, (2)

where tstep is the duration of the step and amax and
amin are the maximum and minimum vertical accel-
eration values during the step time, respectively. Note
that accelerometer samples were filtered by a moving
average, the length of which depends on sampling fre-
quency and lies in the interval [8, 20]. Optimal calibra-
tion constant K was obtained by processing the exper-
imental data gathered from ten subjects.
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Quaternions were used to represent the altitude of
the device. Because of the limited computational re-
sources of the microcontroller unit (MCU), the com-
plementary filter in time discrete form was applied
[29]. A person’s heading was extracted from quater-
nion observations as the mean of two two-dimensional
vectors corresponding to the last two steps.

The position update was performed on the step ba-
sis. As the system detects a step, it acquires a step
length and a step heading direction. Both are passed to
the trajectory calculation module in which a new posi-
tion point is added to the trajectory. All processing is
performed by the internal MCU of a mobile device. As
the time to send the data to the server approaches, new
calculated trajectory points along with ToF and path
loss data are included in the INCP message.

IMU performance was evaluated through experi-
ments. The Return Position Error parameter, i.e., the
computed return position in comparison with the real
one, for multiple tests did not exceed 6% of the total
travelled distance [28].

The IMU trajectory can provide position estimation
even if ToF measurements are unavailable, and can be
used as an extra constraint in particle or Kalman filter-
ing techniques.

4.2. Particle filter

To fuse all information available in the localization
server, the particle filter was used. The particle fil-
ter is a very efficient algorithm that is widely used
for location calculation with noisy measurements [30].
To represent the uncertainty of an object position, a
set of random samples or particles with corresponding
weights is used. Each particle represents the possible
state of the mobile object, considering information re-
garding object position and direction. Particles move
according to the selected motion model and are subject
to constructional restrictions; for example, they can-
not pass through walls. After several steps of the algo-
rithm, the particle set converges to the factual state of
a mobile object.

In the current implementation, at each time moment
t, the system state is characterized by the set of parti-
cles Xt

(i), i = 1..N , where each particle Xt
(i) corre-

sponds to the possible position (xt, yt) and orientation
θn of the located object. Each particle moves accord-
ing to the trajectory acquired from the IMU; therefore,
it is not necessary to introduce information regarding
target velocity into the motion model.

For simplicity, the ToF measurements are used only
for geometrically removing particles from the loca-
tion area. Therefore, no weights are used. The typical
phases of the particle filter algorithm, including initial-
ization, propagation, update, resampling, and state es-
timation, are described below.

4.2.1. Initialization
During the initialization phase, the set of N parti-

cles is randomly generated within the area of the inter-
section of circles corresponding to the ToF measured
distances, as illustrated in Figure 7. The motion direc-
tions of the particles are uniformly distributed in the
range from 0 to 360 degrees.

Fig. 7. Initial particles, generated inside the circle intersection area;
AP1, AP2, and AP3 are access points, forming the circle intersection
area; the radii of the circles are equal to the ToF measured distances;
solid dots denote particles; and the arrows indicate particle positions
after the propagation phase

4.2.2. Propagation
In the propagation phase, the next position of a par-

ticle is determined by the trajectory obtained from the
IMU. The trajectory between two sequential moments
of ToF measurements t − 1 and t is presented as the
number of vectors sj , j = 1 . . . J , as shown in Fig-
ure 8. Each vector sj includes information about its
length lj and heading αj .

Fig. 8. Example trajectory acquired from an embedded IMU; black
circles show the moments of ToF measurements, t− 1 and t; white
circles correspond to the J − 1 checkpoints set by the IMU
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The particle coordinates and direction are changed
according to the following motion model equation:

xt = xt−1 +

J∑
j=1

(lj + δlj) · cosαj , (3)

yt = yt−1 +

J∑
j=1

(lj + δlj) · sinαj , (4)

θt = θt−1 +

J∑
j=1

(αj + δαj), (5)

where (xt, yt) and (xt−1, yt−1) denote coordinates of
the target location at corresponding time moments t
and t − 1, θt and θt−1 are the calculated and previous
target directions, respectively, and lj and αj are the
step length and direction, respectively. δl = N(0, σl)
is a normally distributed random step noise with devia-
tion σl that corresponds to the possible changes in step
length of an object, and δα = R(−α, α) is uniformly
distributed random noise that corresponds to the pos-
sible changes in object direction. The errors δl and δα
are empirically set with dependence on the quality of
the information acquired from the IMU.

Structural information regarding the building is used
to increase positioning accuracy [31]. If a particle
crosses a wall during its motion, the particle is re-
moved from the current set (see Figure 9).

Fig. 9. Particle propagation restricted because of building structure

After the propagation step, only K out of N par-
ticles survive. It is possible that the final particle set
is empty (i.e., K = 0). In this case, the system is re-
initialized according to the first step of the algorithm.
For example, the re-initialization procedure could oc-
cur when the object significantly changes the direction
of its motion or the period between measurements is
extremely large.

4.2.3. Update
The update procedure is applied when new ToF

measurements are received. First, the location area is
formed by intersecting the circles corresponding to the
ranging results. Second, the propagated particles that
occurred outside the intersection are removed from the
final set. Thus, after removal, onlyM particles survive.

4.2.4. Resampling
Since there is no weight calculation used in the de-

scribed algorithm, a resampling procedure differs from
the typical procedure [30]. Each particle from the set
of M surviving particles is duplicated n times, where
n is the closest integer to N

M .

4.2.5. State estimation
As a final step, the object location is calculated as

the average of the particles as follows:

X̂ =
1

N

N∑
i=1

X(i). (6)

4.2.6. Algorithm summary
The particle filter algorithm is presented below us-

ing pseudo-code.
The following input data is used at each iteration

of the algorithm: {Xt−1} is the set of particles at the
previous step, {Zt} is the set of current distance mea-
surements, Ut is the trajectory data registered with the
IMU, and N is the initial number of particles.

1. Draw the area of circle intersection correspond-
ing to the received measurements {Zt} (see Fig.
7).

2. If {Xt−1} is empty, generate set {Xt} of N new
particles inside the area of circle intersection and
go to step 7.

3. Calculate new particle positions {Xt} by prop-
agating each particle from set {Xt−1} with new
data Ut according to (3), (4), and (5).

4. From set {Xt}, remove those particles that inter-
sected a wall during propagation (see Fig. 9).

5. From set {Xt}, remove those particles that are
located outside the area of circle intersection
{Zt}.

6. Resample the rest of the particles {Xt} by dupli-
catingM remaining particles n times, where n is
the closest integer to N

M .
7. Calculate object location by averaging the resam-

pled particles from set {Xt} via (6).
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Fig. 10. Area-of-Interest determination by a particle cloud; A1, · · · ,
A4 are access points with circles corresponding to the ToF measure-
ments; kitchen, bathroom, tv room, and bedroom are AoIs; 1 indi-
cates the true position of the pedestrian; 2 indicates the averaged (by
all particles) position of the pedestrian (incorrect proposition); green
triangles indicate particles corresponding to the possible locations of
the pedestrian

4.3. AoI determination

There are two ways to determine the area within
which an object is located. The straightforward ap-
proach is to determine whether the location point is
inside a certain AoI. This approach was used in the
EvAAL-2013 competition.

A more robust approach uses a particle state repre-
sentation, i.e., based on the probability of an object be-
ing in a certain area. This could be estimated as the
number of particles inside the area divided by the to-
tal number of particles. An event stating that the object
is inside the area is generated when the correspond-
ing probability exceeds a certain threshold, for exam-
ple 50%.

A true-to-life situation happened at the EvAAL-
2013 competition and depicted in Figure 10 demon-
strates these two approaches.

In the figure, the true position of the pedestrian is
labeled 1. Furthermore, the particle cloud is separated
into three groups. One group is located near the true
position of the pedestrian in the kitchen area. The two
other groups are in the tv room and the right bottom
corner of the hall near the door. Straightforward cal-
culations according to (6) yield the object’s position
marked by label 2. Thus, the object belongs neither to
the kitchen area nor the tv room, and the corresponding
event of being in the certain AoI did not occur.

Since a majority of particles are concentrated in the
kitchen area, however, their relative number exceeds
the threshold for AoI determination. The AoI event
might be generated in this case, a scenario correspond-
ing to the ground truth.

Note that in Section 6, the term "the improved
AoI determination algorithm" is used to refer to this
probability-based approach.

5. Results of the EvAAL-2013 competition

The organizers used two approaches to test the per-
formance of the competing positioning systems. First,
they determined point-to-point accuracy for predefined
traces. Second, contestants provided real-time data
upon entering certain AoIs. To compare the results
of the locations, a calculation of the 75% quantile of
the positioning error cumulative distribution function
(CDF) was used.

There were four different traces with different
lengths and shapes. The ground and calculated traces
with the corresponding CDF obtained during the
EvAAL-2013 competition for the RealTrac position-
ing system are shown in Figure 11.

In the figure, the solid lines in the left plots corre-
spond to the ground traces, whereas the dashed lines
correspond to the traces calculated by the RealTrac
system during the EvAAL competition. The OX and
OY axes of the left plots correspond to OX and OY
coordinates of the building. The CDFs for the corre-
sponding traces are shown in the right plots, with the
OX axis corresponding to the point-to-point accuracy
(i.e., positioning error) and the OY axis corresponding
to the probability of having a certain positioning error.
The black arrow indicates the error for the 75% quan-
tile for the given CDF.

For the first (shortest) trace, the 75% quantile of
point-to-point accuracy was equal to ≈ 3 m, for the
second trace, it was ≈ 2 m, for the third trace, it was
≈ 1.9 m, and for the fourth (longest) trace, it was <1.7
m. The efficiency of the particle filter depended on the
convergence speed of the algorithm. The longer the
trace, the better the accuracy results achieved. For the
shortest trace (trace 1 in Figure 11), the algorithm did
not have sufficient time to converge, thus leading to
poor accuracy results (≈ 3 m @75%).

Detailed results obtained by the RealTrac team in
comparison with other competitors are presented in the
next two tables.
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Fig. 11. Four traces and corresponding CDFs during the
EvAAL-2013 competition; black solid dots indicate the starting
points of the traces; the OX and OY axes of the left plots correspond
to coordinates of the building; the OX axis of the right plots corre-
sponds to the point-to-point accuracy, whereas the OY axis corre-
sponds to the probability of locating a person with the given accu-
racy; solid lines on the left plots correspond to ground traces; dashed
lines correspond to calculated traces; arrows in the right plots indi-
cate 75% quantile accuracy

Table 1 describes accuracy and availability results
during the four walking sessions.

Rows B1.1, B1.2, B2.1, and B2.2 correspond to
traces 1, 2, 3, and 4 in Figure 11, respectively. The
first two columns show the 75th percentile of the dis-
tance between true and estimated positions. The last
four columns reveal the scores obtained by the Real-
Trac system for accuracy and availability during the
first and second attempts. In benchmarks B1.1 and
B1.2, only one person walked around the Living Lab
with brief pauses following the predefined paths. In
benchmark B2.1, one person moved along the prede-
fined path; at the same time, an additional actor moved

freely inside the Living Lab space. In benchmark B2.2,
the actor walked along the coupled traces from B1.2
and B2.1. For benchmarks B1.1, B1.2, and B2.1, the
point-to-point accuracy was selected as the accuracy
score; for trace B2.1, the AoI accuracy was measured.

These results show that the RealTrac system con-
verges to the true position of the actor in time. Some
loss in the availability score (see columns for the avail-
ability criterion for the two attempts in Table 1) can be
explained by the fact that the system provided exactly
one sample every half second, and sometimes packets
were lost or delayed.

Table 2 describes the obtained scores for all partic-
ipating teams, showing results for each contest crite-
rion, namely, accuracy, availability, installation com-
plexity, user acceptance, and integrability within AAL.
The first three scores were calculated by benchmark-
ing and the last two were calculated by a question-
naire. The total score, obtained by weighting, is also
presented in the table. Additional information regard-
ing the evaluation procedure is presented in Section 2.

6. Algorithms evaluation

After the EvAAL-2013 competition ended, all ob-
tained results were analyzed. It was found that there
were potential improvements to the localization al-
gorithm performance for both point-to-point and AoI
tests.

For algorithm evaluation, the set of measurements
and corresponding ground truth traces collected dur-
ing the EvAAL competition was used. The set of ex-
perimental data consists of four trajectories; each tra-
jectory consists of the set of ground points with cor-
responding ToF measurements acquired at each point
for a given mobile device from several anchors. Ex-
perimental data were obtained for each trace two times
(i.e., from the two allowed attempts during the compe-
tition). One of the attempts was announced as success-
ful and was considered in the final results, whereas the
other attempt was rejected.

The general idea behind finding improved and
proper settings for the algorithm was as follows. We
proposed to optimize the accuracy of the rejected at-
tempt (i.e., to use it as reference data), and then apply
these settings for the particle filter algorithm to the ac-
cepted attempt. Next, we proposed comparing results
of processing the data from the accepted attempt by
the algorithms with the two sets of settings (i.e., the
set used at EvAAL-2013 and the optimized set). We
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Table 1
RealTrac accuracy and availability results. B1.1 – one person, first
path (the shortest one), B1.2 – one person, second path, B2.1 – two
people moving around, B2.2 – AoI test

Trace Accuracy, [m] @75% Accuracy, scores Availability
Attempt 1 Attempt 2 Attempt 1 Attempt 2 Attempt 1 Attempt 2

B1.1 3.09 3.06 1.8046 1.8787 9.9167 9.8333
B1.2 2.29 2.05 3.4104 3.9006 9.8864 9.7727
B2.1 1.87 2.70 4.5060 2.6088 9.8739 8.5714
B2.2 1.74 2.22 6.8312 6.4961 9.8214 9.7194
Mean N/A N/A 4.1381 3.7211 9.8746 9.4742

Table 2
EvAAL-2013 overall scores

Team Name Accuracy Availability
Installation User Integrability

Total
complexity acceptance in AAL

RealTrac 4.14 9.87 10 7.43 8.68 7.21
AmbiTrick 2.46 9.92 7 6.10 9.44 6.18
IPNlas 1.12 10.00 10 7.91 8.03 6.18
LOCOSmotion 3.47 6.59 7 7.53 8.56 6.02
Magsys 1.55 9.24 10 6.66 6.28 5.66
FEMTO-ST 0.52 9.81 10 3.84 8.91 5.25
AALocation 2.15 8.15 0 5.41 4.87 4.20

believe that this approach increases the applicability of
our research.

6.1. Point-to-point accuracy

The efficiency of the particle filter strongly depends
on noise parameters δl and δα, as well as the number
of particles. Noise parameters δl and δα depend on the
quality of measurements acquired from the embedded
IMU. Knowing the characteristics of a person’s motion
(i.e., step length, and velocity), it becomes possible to
adjust them to be optimal for a given person. Further-
more, the number of particles is a critical parameter
that influences the convergence rate.

Therefore, we performed a set of simulations to op-
timize the parameters of noise and the number of parti-
cles, and compared the acquired results with the results
from the competition.

During the EvAAL competition, the following pa-
rameters were used: δl = N(0, σl = 0.8), δα =
R(−π4 ,

π
4 ), and number of particles N = 200. Fur-

thermore, in this paper, these settings are referred to
as PFEvAAL. These settings were determined in the
experiments conducted in the IT park of Petrozavodsk
State University [27,28] just before EvAAL-2013. Pa-
rameters of the IMU noise were chosen to cover data

inaccuracies for all possible cases of holding or car-
rying the mobile device (e.g., keeping in a pocket or
bag, or holding in one’s hand). The number of parti-
cles was chosen to achieve the best location accuracy
during the running of the algorithm on the predefined
measurement set.

As was found later (i.e., after EvAAL-2013), the
following parameters minimize positioning error for
the reference data: δl = N(0, σl = 0.3), δα =
R(− π

20 ,
π
20 ), and number of particles N = 100. These

optimal settings are referred to as PFopt.
The particle filter algorithm is based on random par-

ticle generation; therefore, the results of the algorithm
vary from one run to another. To estimate the average
positioning accuracy, it is necessary to conduct a large
number of runs for a given set of ground and measure-
ment data.

Results of the positioning accuracy calculated with
the particle filter with optimized parameters were com-
pared with those calculated with the particle filter used
during the EvAAL-2013 competition. In both cases,
a series of 1000 runs of the algorithm for each set of
trace data was conducted and processed.

The distribution of accuracy results (75% quantile)
acquired within the PFEvAAL and PFopt series are
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shown in the right plots of Figure 12. In the figure,
solid bars show the results of the algorithm used at the
EvAAL-2013 competition, PFEvAAL. Shaded bars
show the results of improved algorithm, PFopt. Ar-
rows on the plots indicate the 75% quantile value ob-
tained at the competition. The left plots show examples
of the traces calculated with our improved algorithm.
Evidently, the optimized settings of the particle filter
yield better results (compare the dashed curves for all
traces in Figure 11 and Figure 12).

The mean accuracy of our improved algorithm
PFopt is better as compared with that of PFEvAAL.
The histogram for our improved algorithm is also nar-
rower; the main cause for such a result is the smaller
deviation of particle angle noise, which was decreased
from δα = R(−π4 ,

π
4 ) to δα = R(− π

20 ,
π
20 ).

The longer the trace, the narrower the histogram for
both algorithms, since for such long traces, the larger
part of the trajectory is calculated with the particle fil-
ter in the converged state.

6.2. AoI determination

During the competition, the straightforward ap-
proach was used for AoI determination by the Real-
Trac localization server. Thus, an AoI event was re-
ported to the AAL system if the object (i.e., the center
of mass of all N particles representing the object) was
located within the AoI.

As was noted in Section 4.3, a detailed analysis of
the competition results revealed an approach to signif-
icantly improve performance of the system for AoI de-
termination. The particle filter allows us to estimate
not only the location of an object but also the poste-
rior location density. Furthermore, it makes it possible
to use this posterior density for AoI determination by
calculating the relative number of particles in all AoIs.

Table 3 presents a comparison of the two approaches
of AoI determination for the largest areas in the Living
Lab (i.e., bathroom, bedroom, kitchen, and tv room).

Table 3
Percentage of correct AoI determinations for two approaches

AoI Straightforward, % Improved, %

bathroom 76 85
bedroom 87 89
kitchen 32 92
tv room 85 93

Since the particle filter is a probabilistic algorithm,
results of area determination vary from one run to an-
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Fig. 12. Examples of traces calculated with our improved algorithm
and a comparison of the distribution of accuracy results for both
PFEvAAL and PFopt with our improved algorithm; in the left
plots, black solid dots indicate starting points of the traces, solid
lines correspond to ground traces, dashed lines correspond to ex-
amples of traces calculated using our improved algorithm (PFopt),
the point on each trace corresponds to the beginning of the trace,
and the OX and OY axes correspond to coordinates of the building;
in the right plots, the histograms portray accuracy results obtained
over 1000 runs of the algorithms, solid boxes correspond to the algo-
rithms used at the EvAAL-2013 competition (PFEvAAL), whereas
shaded boxes correspond to our improved algorithm (PFopt), the
OX axis indicates 75% quantile positioning accuracy, the OY axis
indicates the probability of achieving the given accuracy, and black
arrows indicate 75% quantile accuracy results demonstrated at the
EvAAL-2013 competition

other, much like the position calculation algorithms de-
scribed in Section 4.2 and discussed in Section 6.1.
Therefore, the PDF of the AoI determination results
acquired in multiple runs with the same given input
data adequately describes the effectiveness of the algo-
rithm.
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The results presented in Figure 13 were acquired
from 1000 runs for each AoI determination algorithm
(i.e., the straightforward and improved approaches).
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Fig. 13. Distribution of AoI determination results; the OX axis cor-
responds to the correctness of AoI determination expressed as a per-
centage; the OY axis corresponds to the probability of the results;
solid boxes indicate results generated with the straightforward algo-
rithm used at the EvAAL-2013 competition, whereas shaded boxes
correspond to the improved algorithm that uses the particle state rep-
resentation

In the figure, the OX axis corresponds to the num-
ber of successful AoI determinations relative to all at-
tempts. The OY axis corresponds to the estimation of
the probability of obtaining the given AoI determina-
tion results.

As an example, for the kitchen, the most proba-
ble result for the straightforward approach is close to
zero, since the area is small and NLOS ToF errors are
large. As a result, the system cannot recognize whether
the object is within this area. However, using our im-
proved algorithm AoIopt, the probability of correctly
detecting the actor inside the kitchen is equal to≈90%.
Furthermore, the histograms corresponding to our im-
proved approach are narrower, indicating that our im-
proved algorithm shows more stable results from one
run to another.

In summary, for the information presented in the
plots of Figure 13, the use of the particle representa-
tion of posterior location distribution increases the per-
centage of successful AoI determinations.

6.3. Advantages of our improved solution

As mentioned above, all RealTrac equipment and
software modules at the EvAAL competition used de-
fault general settings defined prior to the event. For
example, localization algorithms were tuned to be
used without considering the data describing walls and
building contours. As another example, the maximum
speed of an object was set to a very high limit of 3
m/s, which is not achieved in reality. Additionally, as
yet another example, an actor was assumed to put the
mobile device anywhere he or she wanted.

In fact, the mobile device was placed (and remained)
in the actor’s pocket, which significantly decreased
IMU inaccuracies. Furthermore, the actor walked with
a predefined speed and had a certain step length that
allowed a posteriori analysis to optimize step length
noise. Data regarding ToF measurements in the Living
Lab enabled us to estimate possible location precision
and optimize the number of particles. Therefore, we
suggested the approach of applying the optimized set-
tings found by analyzing the attempts rejected at the
competition (see Section 6).

The use of the optimized parameters of the particle
filter PFopt and AoIopt significantly improved posi-
tioning accuracy and the efficiency of AoI determina-
tion. According to Figure 12, the average accuracy was
improved by approximately 1 m for all traces; more-
over, the percentage of successful AoI determinations
for the kitchen increased from 32% to 92% (see Ta-
ble 3).

6.4. Algorithm performance

A key characteristic of the particle filter is the trade-
off between the number of particles and processing
time. A larger number of particles allows us to es-
timate location more precisely; however, it requires
more computational resources. Figure 14 illustrates the
dependence of location accuracy (75% quantile of the
CDF) and the average calculation time per location on
the basis of the number of particles for the improved
versions (both PFopt and AoIopt) of the algorithm.
The particle filter ran on a computer with an AMD
Athlon II X2 245 2.9 GHz processor using the Ubuntu
10.10 operating system.

As shown in the figure, location error decreases
significantly when the number of particles increases
from five to approximately 100. For a greater number
of particles, location accuracy remains approximately
constant, whereas processing time linearly increases.
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Fig. 14. Accuracy (75% quantile of the CDF) and calculation time
per location depending on the number of particles

Therefore, 100 particles were chosen as the optimal
setting for the PF implementation.

7. Conclusion

The aim of this contribution was to examine results
of the EvAAL-2013 indoor localization competition
using experiences of the RealTrac team, which was the
contest winner. A number of criteria, including posi-
tioning accuracy, availability, installation complexity,
user acceptance, and integrability within AAL, differ-
entiated our results from previous findings in the lit-
erature and the results of other competitors. This dif-
ferentiation is attributed to the use of a set of special
techniques and decisions of the RealTrac system.

In this paper, it was shown that scores obtained at
the EvAAL-2013 competition could have been higher
if proper localization algorithm settings were applied.
Additionally, better results could be achieved by using
information from external sensors in the Smart House
Living Lab provided by the organizers. For example,
location-aware context events regarding actors switch-
ing the light on or off, proximity sensors, and the like
might have been used for real-time corrections in posi-
tioning estimations. Unfortunately, the RealTrac team
used no such information in the EvAAL-2013 compe-
tition; however, the work after the competition indi-
cates the possibility of further improvements in local-
ization accuracy, which was the highest weighted cri-
terion.
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